天然氣體流量計在煤氣廠的運用及測量原理
點擊次數:740 發布時間:2020-12-20 11:19:20
天然氣體流量計與其它差壓流量計一樣,都是基于密閉管道中能量轉換的伯努利定理進行測量,即對理想流體,介質的流速與差壓的平方根成正比。當介質以一定的流速迎著錐尖方向流過時,由于錐體的節流作用,會使錐體下游形成低壓區,通過錐體的節流作用,會使錐體下游形成低壓區,通過錐體上游管壁取高壓,管壁與錐體尾部連通的空心管取低壓,送到壓差變送器測出壓差值,
因為管壁摩擦力減小了流過管壁的流體速度,所以在管道中流速分布為:在管壁處流速接近零,愈靠近管線中心流速愈大,在管線中心處流速*大。而當流體流過氣體流量計時,因氣體流量計是通過在管線中心懸掛一個氣體體來節流,錐體直接與流體高速中心部分相互作用,迫使管線中心的高速流體與接近管壁的低速流體均勻化,即兩者的流速趨于一致。
與各種節流裝置的結構比較,標準孔板是流體在管道中心突然收縮,不僅阻力損失大,而且加劇了流體流速分布的不均勻性,管道邊緣阻斷,臟污介質聚集在標準孔板前后;文丘里管(和標準孔板一樣仍然是標準節流裝置的一種)則是在管道中心逐漸收縮,雖然流體流速分布的不均勻性仍然存在,但阻力損失稍有降低,臟污介質聚集的情況有所改善,只是制作困難;環形孔板是在管道中心置一圓盤,而管道邊緣則可流通,即從標準孔板的管道中心突然收縮轉變為管道邊緣突然收縮,因而可使管道內流速均勻化,可使臟污介質不致聚集在環形孔板前后;而氣體流量計是在管道中心置一圓錐,它的結構是管道邊緣逐漸收縮,阻力損失小,且可使管道內流速均勻化,使臟污介質不致聚集在環形孔板前后。由此得出結論:氣體流量計是節流裝置發展過程中一系列革新的必然結果。
1、直管段要求低。雖然所有差壓式流量計都是依據伯努利定理進行測量,但伯努利定理有一個基本要求,即被測量的流體必須為理想流體。采用孔板、噴嘴等傳統的差壓流量計的節流裝置時,為了盡量滿足伯努利定理的要求,必須有非常長的前、后直管段,以便將不規則流動的流體盡可能整形成為理想流體。而氣體流量計流量采用獨特的置于管道中心的流線型節流結構設計,在檢測流量之前,同時對不規則流動的流體進行整流,在不增加流體整流器的情況廠,巧妙地解決流體整流的問題。中心懸掛的流線型錐體能重塑流速曲線,在緊靠錐體上游和下游較窄的區域內(前0~3D,后0~1D),將流速不規則的液體直接整流成理想液體,可充分滿足伯努利定理的要求,獲得很高的測量精度和重復性。不需要非常長的直管段整流,這在流量計的安裝過程中有很重要的意義。由于現場條件限制,流量計前、后直管的距離分別為1000mm和600mm,但流量計仍能正常穩定運行。
2、耐污染,不易堵。原來使用的是孔板流量計和均速管流量計,由于煤氣中含有焦油、萘、硫、氨水等多種雜質,孔板或均速管必須定期清洗或用蒸汽吹掃,否則孔板上、下游端面、上游側直角入口邊緣將受到污染,儀表導壓管會不暢通或堵塞,影響系統測量精度;孔板前、后直管段積水會使管道流通面積減小,流速提高,差壓增加,流量顯示值偏高,嚴重時因導壓管堵塞,變送器無法正常運行。為確保儀表正常穩定運行,儀表工維護工作量很大。氣體流量計有自吹掃式的結構設計特點,無滯留死區。介質流過錐體時會加速,不斷沖刷正壓取壓孔、錐體外壁及錐體附近管壁,而負壓取壓孔則被一小段不流動介質所隔離,臟污雜質進不去,因此氣體流量計可用于各種含雜質、易結晶的臟污介質,如焦爐煤氣、發生爐煤氣等介質。